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Abstract
We investigate correlation functions in a periodic box–ball system. For the
two-point functions of short distance, we give explicit formulae obtained by
combinatorial methods. We give expressions for general N-point functions in
terms of ultradiscrete theta functions.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

Quantum integrable systems such as quantum integrable spin chains and solvable lattice
models are systems whose Hamiltonians or transfer matrices can be diagonalized and for
which eigenstates or free energies can be explicitly obtained [1]. However, to investigate
physical properties of these systems, such as e.g. the linear response to external forces,
we further need to evaluate correlation functions for these systems. This is one of the main
problems in the field of quantum integrable systems and, in fact, obtaining correlation functions
is fairly difficult even for the celebrated XXZ model or the six-vertex model [2].

A periodic box–ball system (PBBS) is a soliton cellular automaton obtained by
ultradiscretizing the KdV equation [3, 4]. It can also be obtained at the q → 0 limit of
the generalized six-vertex model [5, 6]. Hence, from the viewpoint of quantum integrable
lattice models, it is interesting and may actually give some new insights into the correlation
functions of the vertex models themselves to obtain correlation functions of the PBBS. In this
paper, we give expressions for N-point functions for the PBBS, using combinatorial methods
and the solution for the PBBS expressed in terms of the ultradiscrete theta functions.

The PBBS can be defined as follows. Let L � 3 and let �L = { f | f : [L] →
{0, 1} such that �f −1({1}) < L/2 }, where [L] = {1, 2, . . . , L}. When f ∈ �L is represented
as a sequence of 0s and 1s, we write

f (1)f (2) · · · f (L).

The mapping TL : �L → �L is defined as follows (see figure 1).
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f

fTL

Figure 1. Definition of TL for f ∈ �L.

1. In the sequence f , find a pair of positions n and n + 1 such that f (n) = 1 and f (n + 1) = 0,
and mark them; repeat the same procedure until all such pairs are marked. Note that we
always use the convention that the position n is defined in [L], i.e. n + L ≡ n.

2. Skipping the marked positions we get a subsequence of f ; for this subsequence, repeat
the same process of marking positions, so that we get another marked subsequence.

3. Repeat step 2 until a subsequence consisting only of 0s is obtained. A typical situation is
depicted in figure 1. After these preparatory processes, change all values at the marked
positions simultaneously. One thus obtains the sequence TLf .

Sometimes we shall write T t
Lf for TL(· · · (TL(TL︸ ︷︷ ︸

t

f ))). The pair (�L, TL) is called a

PBBS of length L [4, 7]. An element of �L is called a state, and the mapping TL the time
evolution.

The conserved quantities of the PBBS are defined as follows. Let Qj(t) be the number
10 pairs in T t

Lf marked at the j th step in the definition of the mapping TL. Then we obtain
a nonincreasing sequence of positive integers, Qj(t) (j = 1, 2, . . . , m). This sequence is
conserved in time, that is,

Qj(t) = Qj(t + 1) ≡ Qj (j = 1, 2, . . . , m).

For example, for f in figure 1, (Q1,Q2,Q3,Q4) = (3, 3, 2, 1). As the sequence
(Q1,Q2, . . . ,Qm) is nonincreasing, we can associate a Young’s diagram with it by considering
Qj as the number of squares in the j th column of the diagram. The lengths of the rows are also
weakly decreasing positive integers. Let the distinct row lengths be P1 > P2 > · · · > P� and
let nj be the number of times the length Pj appears. The set {Pj , nj }�j=1 is another expression
for the conserved quantities of the PBBS.

An N-point function of the PBBS with M balls may be defined as follows.

〈s1, s2, . . . , sN 〉 := 1

ZH

∑
f ∈�L;M

e
∑L

k=1 Hk(f )f (s1)f (s2) · · · f (sN)

where �L;M := {f ∈ �L | �f −1({1}) = M}, ZH := ∑
f ∈�L;M e

∑L
k=1 Hk(f ) and Hk(f ) is the

kth energy of the state f , which is proportional to the number of kth arc lines defined when
determining the time evolution rule [4], or the kth conserved quantity of the PBBS [8]. (Note
that Hk(f ) is essentially equal to the energy function for the transfer matrix of the crystal
lattice models with k + 1 states on a vertical link [5, 7].) Noticing the fact that �L;M = ⊔

Y �Y ,

〈s1, s2, . . . , sN 〉 = 1

ZH

∑
Y

∑
f ∈�Y

e
∑L

k=1 Hk(f )f (s1)f (s2) · · · f (sN),

where Y are partitions of M corresponding to the conserved quantities of the PBBS (see
section 2). Since, for fi ∈ �Yi

(i = 1, 2), ∀k, Hk(f1) = Hk(f2) (k = 1, 2, 3, . . .) implies

2
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Y1 = Y2, and vice versa, by choosing a state fY in �Y , we can write

〈s1, s2, . . . , sN 〉 = 1

ZH

∑
Y

e
∑L

k=1 Hk(fY )
∑
f ∈�Y

f (s1)f (s2) · · · f (sN).

Thus, to obtain correlation functions of PBBS, we only have to evaluate those on the set �Y :

〈s1, s2, . . . , sN 〉Y := 1

|�Y |
∑
f ∈�Y

f (s1)f (s2) · · · f (sN). (1)

We also point out that if we put ∀k, ∀f, Hk(f ) = 0, N-point functions become trivial:

〈s1, s2, . . . , sN 〉 = L−NCM−N

LCM

= M(M − 1) · · · (M − N + 1)

L(L − 1) · · · (L − N + 1)
.

In the following sections, we shall evaluate (1).
First we summarize some useful properties of the PBBS. We say that f has (or that there

is) a 10-wall at position n if f (n − 1) = 1 and f (n) = 0. Let the number of the 10-walls
be s and let their positions be denoted by a1 > a2 > · · · > as . Then, we have the following
proposition.

Proposition 1 ([9]).(
T t

Lf
)
(n) = ηt−1

n+1 − ηt
n+1 − ηt−1

n + ηt
n,

ηt
n = max

mi∈Z

i∈[s]

⎡
⎣ s∑

i=1

mi(bi + tWi − n) −
�∑

i=1

�∑
j=1

mi�ijmj

⎤
⎦ , (2)

bi = ai +
i−1∑
j=1

2 min{Wi,Wj } + Wi +
Zi

2
, (3)

�ij = Zi

2
δij + min{Wi,Wj },

Zi = L −
s∑

j=1

2 min{Wi,Wj },

where Wi denotes the amplitude of the ‘soliton’ corresponding to ai obtained by the procedure
explained in [9].

The set {Wi}si=1 consists of quantities of the PBBS and ηt
n is the ultradiscrete theta function

[10]. We shall use proposition 1 for determining N-point functions in section 3.
Next we introduce two procedures which are important in this paper. For a given f ∈ �L,

a state Ef = E(f ) is defined to be

(Ef )(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (n) (1 � n � as − 2)

f (n + 2k)

(
as−k+1 − 2k + 1 � n � as−k − 2k − 2

(k = 1, 2, . . . , s − 1)

)

f (n + 2s) (a1 − 2s + 1 � n � L − 2s)

(as > 1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (n + 1) (1 � n � as−1 − 3)

f (n + 2k + 1)

(
as−k − 2k � n � as−k−1 − 2k − 3

(k = 1, 2, . . . , s − 2)

)

f (n + 2s − 1) (a1 − 2s + 1 � n � L − 2s).

(as = 1)

3
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The mapping E : �L → �L−2s is called the 10-elimination. Ef is a subsequence of f

obtained by eliminating all the 10-walls in f simultaneously. For example,

f = 0011111000011111000000001111001100001111100111000011110000000000,

Ef = 001111 0001111 0000000111 01 0001111 011 000111 000000000

= 00111100011110000000111010001111011000111000000000.

Its inverse process is called the 10-insertion, I (j1, j2, . . . , jd) = I2 ◦ I1(j1, j2, . . . , jd) :
�L → �L+2(d+s), where s is the number of 10-walls in f ∈ �L. The 10-insertion is
defined as follows: shifting the origin if necessary, we can assume that f (L) = 0. For
{j1, j2, . . . , jd} (1 < j1 < j2 < · · · < jd � L + d), the mapping I1(j1, j2, . . . , jd) : �L →
�L+2d is defined as

(I1(j1, j2, . . . , jd)f )(n)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 (n = L + 2d − jk − k + 1),

0 (n = L + 2d − jk − k + 2),

f (n) (1 � n � L + d − jd),

f (n − 2(d − k + 1)) (L + 2d − jk − k + 3 � n � L + 2d − jk−1 − k + 1),

f (n − 2d) (L + 2d − j1 + 2 � n � L + 2d),

where k ∈ [d]; furthermore, I2 : �L+2d → �L+2(d+s) is defined to be

(I2f
′)(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 (n = gk + 2(s − k) + 1),

0 (n = gk + 2(s − k) + 2),

f ′(n) (1 � n � gs),

f ′(n − 2(s − k + 1)) (gk + 2(s − k) + 3 � n � gk−1 + 2(s − k) + 2),

f ′(n − 2s) (g1 + 2s + 1 � n � L + 2(d + s)),

where k ∈ [s], f ′ ≡ I1(j1, j2, . . . , jd)f ∈ �L+2d and

g′
k = max{m ∈ [L + d]|m = ak − 1 + �{r ∈ [d]|L + d − jr + 1 < m}},

gk = g′
k + �{r ∈ [d]|L + d − jr + 1 < g′

k}. (4)

For example,

f = 0011100111000001101000111000000,

I1(3, 11, 25)f = 001110011 ∗ 1000001101000 ∗ 1110000 ∗ 00 (5)

= 0011100111010000011010001011100001000, (6)

I (3, 11, 25)f = 00111 10 0011101 10 0000011 10 01 10 00010111 10 00001000,

where 10 and 10 , respectively, denote the inserted 10 at f �→ I1(j1, j2, . . . , jd)f and
I1(j1, j2, . . . , jd)f �→ I2(I1(j1, j2, . . . , jd)f ).

In the above example, g′
k is the position of 1 found in the kth 10-wall in the sequence

(5), and gk is the position of 1 found in the kth 10-wall in the sequence (6). That is,
{g′

k}5
k=1 = {27, 20, 18, 11, 5} and {gk}5

k=1 = {29, 21, 19, 12, 5}.
4
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2. One- and two-point functions obtained by combinatorial methods

We assume that Y denoting the conserved quantities of f ∈ �Y is the partition

(P1, P1, . . . , P1︸ ︷︷ ︸
n1

, P2, P2, . . . , P2︸ ︷︷ ︸
n2

, . . . , P�, P�, . . . , P�︸ ︷︷ ︸
n�

),

where P1 > P2 > · · · > P� � 1. Note that Y is a partition of M, i.e. M = ∑�
i=1 niPi . As

mentioned in section 1, we consider N-point functions (1) of the PBBS:

〈s1, s2, . . . , sN 〉Y = 1

|�Y |
∑
f ∈�Y

f (s1)f (s2) · · · f (sN).

The value of |�Y | is already known.

Proposition 2 ([11]).

|�Y | = L

L0

(
L0 + n1 − 1

n1

)(
L1 + n2 − 1

n2

)
· · ·

(
L�−1 + n� − 1

n�

)
,

where L0 = L − 2M, Li = L0 +
∑i

j=1 2nj (Pj − Pi+1) and P�+1 = 0.

Since the N-point function 〈s1, s1 + d1, . . . , s1 + dN−1〉Y does not depend on the specific
site s1 (because of translational symmetry), we denote

CY (d1, d2, . . . , dN−1) ≡ 〈s1, s1 + d1, . . . , s1 + dN−1〉Y ,

where 1 � d1 < d2 < · · · < dN−1 < L. Note that CY (∅) denotes the 1-point function 〈s1〉Y .

Proposition 3.

CY (∅) = M

L
.

Proof. Since
∑L

n=1 f (n) = M ,

LCY (∅) =
L∑

s1=1

〈s1〉Y = 1

|�Y |
∑
f ∈�Y

L∑
n=1

f (n) = 1

|�Y | |�Y |M = M.

�

Next, we consider the 2-point functions.

Proposition 4.

CY (1) = M − s

L
,

where s = ∑�
i=1 ni .

Proof. Since
∑L

n=1 f (n)f (n + 1) = M − s,

LCY (1) = 1

|�Y |
∑
f ∈�Y

L∑
n=1

f (n)f (n + 1) = M − s.

�

5
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In order to investigate CY (2), let us put

ki :=
{

nj (i = Pj ),

0 otherwise,

k̂i :=
P1∑
j=i

kj ,

L̃ := L − 2k̂1 (= L − 2s),

NY (2) :=
P1∑
i=3

ki(i − 2).

Note that ki denotes the number of the rows of the conserved quantity Y with length i, and k̂i

denotes the number of the rows of the conserved quantity Y with length �i. Thus, k̂1 is the
number of boxes in the first row of Y.

We also define

Vf0 := {f ∈ �Y |Ef = f0},
G2(f ) := �{n ∈ [L]|f (n)f (n + 2) = 1}.

The following lemma is the key to evaluating CY (2).

Lemma 1. Let

V
(j)

f0
:= {f ∈ Vf0 |G2(f ) = NY (2) + j}.

Then, if Vf0 = φ, Vf0 = ⊔k1
j=0 V

(j)

f0
and∣∣V (k1−j)

f0

∣∣ = νj

k1!
, (7)

where

νj :=
(

j−1∏
i=0

(L̃ − 2k̂2 − i)

)(
k1+j−1∏

i=0

(2k̂2 + i)

)

×

⎛
⎜⎝ ∑

0�i1<···<ij <k1+j−1
ir +1<ir+1 (r∈[j−1])

j∏
h=1

1

(2k̂2 + ih)(2k̂2 + ih + 1)

⎞
⎟⎠ .

Proof. When f ∈ Vf0 , there exists a set of positive numbers {ji}k1
i=1 (1 < j1 < j2 < · · · <

jk1 � L̃ + k1) such that

f = I (j1, j2, . . . , jk1)f0.

By examining the positions of 101 and 111, we find that

G2(f ) = NY (2) + γ + J,

where γ = γ
(
f0; {ji}k1

i=1

)
is the number of 10s inserted into the positions adjacent to

consecutive 1s, and J = �
{
i ∈ [d − 1]

∣∣ ji + 1 = ji+1
}

(see figure 2). For example,

f0 = 001110000100110000,

6
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f0 00111000

G2(f0) 1

f = I(k)f0 001011110000 001101110000 001111010000 001111000100
(k = 7) (k = 6) (k = 4) (k = 2)

G2(f) 3 2 3 2
(γ = 1, J = 0) (γ = 0, J = 0) (γ = 1, J = 0) (γ = 0, J = 0)

Figure 2. Example G2(f ), γ and J.

and f = I (5, 6, 14, 15, 18)f0; then

f = 0011110100010100011000111010100000

(= 00111 10 100010 10001 10 0011 10 10 100000 ).

In this example, k1 = 5, k̂2 = 3, NY (2) = 3, γ = 2 and J = 2. Since 0 � γ + J � k1, we
have the decomposition Vf0 = ⊔k1

j=0 V
(j)

f0
.

To know
∣∣V (j)

f0

∣∣, we only have to count the number of states with γ + J = j .

For k1 = 1, |Vf0 | = L̃. Since there are k̂2 sets of consecutive 1s, 2k̂2 states have γ +J = 1
(γ = 1, J = 0) and the other L̃ − 2k̂2 states have γ + J = 0 (γ = 0, J = 0).

For k1 = 2, as was seen in case k1 = 1, there are 2k̂2 positions at which γ + J can be
increased by 1. If one 10 pair is inserted in one of these positions, then there are 2k̂2 + 1
positions for the other pair to increase γ + J by 1 and L̃ − 2k̂2 positions not to increase it. On
the other hand, if one 10 pair is inserted at one of the L̃ − 2k̂2 non-increasing positions, then
there are 2k̂2 + 2 positions for the other pair to increase γ + J by 1 and L̃ − 2k̂2 − 1 positions
not to increase it. Hence, considering duplication of insertion, there are (2k̂2)(2k̂2 + 1)/2!
states with γ + J = 2,

[
(2k̂2)(L̃ − 2k̂2) + (L̃ − 2k̂2)(2k̂2 + 2)

]
/2! states with γ + J = 1 and

(L̃ − 2k̂2)(L̃ − 2k̂2 − 1)/2! states with γ + J = 0.
In general, we can proceed in a similar manner and, referring to the chart in figure 3, we

obtain (7). �

Proposition 5.

CY (2) =

k1∑
j=0

νj

(
P1∑
i=3

ki(i − 2) + (k1 − j)

)

L

k1∑
j=0

νj

.

Proof. From lemma 1, we see that if Vf0 = φ,

∑
f ∈Vf0

L∑
n=1

f (n)f (n + 2) =
k1∑

j=0

νj

k1!

(
NY (2) + (k1 − j)

)
and

∣∣Vf0

∣∣ =
k1∑

j=0

νj

k1!
.

7
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~
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~

2kL

1ˆ2
~

2kL

4ˆ2 2k

1ˆ2
~

2kL

3ˆ2
0

2

2ˆ2
~

2kL

6ˆ2 2k

~
2kL

5ˆ2 2k

1

2ˆ2 2k

3ˆ2 2k

4ˆ2 2k

2
ˆ2

~
kL

2
ˆ2

~
kL

2
ˆ2

~
kL

2
ˆ2

~
kL

1ˆ2 2k

Figure 3. A chart corresponding to γ + J in the proof of lemma 1.

Since the right-hand side of the last equation does not depend on f 0, and since any state
f ∈ �Y belongs to some Vf0 , we obtain

LCY (2) = 1

|�Y |
∑
f ∈�Y

L∑
n=1

f (n)f (n + 2) =

k1∑
j=0

νj

(
NY (2) + (k1 − j)

)
k1∑

j=0

νj

.

�

For CY (d) (d � 3) , we can use similar arguments based on elementary combinatorics.
However, the expressions become more and more complicated when the difference d increases.
Instead, in the next section, we shall use proposition 1 to obtain expressions for general N-point
functions.

3. N-point correlation functions for the PBBS

Let the state f 0 and the set X Y ⊂ Z
n1
+ × Z

n2
+ × · · · × Z

n�

+ (= Z
s
+) be

f0 = 000 · · · 00︸ ︷︷ ︸
L0

,

and

XY :=
{

{xi(k)}�, ni

i=1,k=1

∣∣∣∣∣ 1 < xi(1) < xi(2) < · · · < xi(ni) � Li−1 + ni

(i = 1, 2, . . . , �)

}
. (8)

8
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We define the state fX recursively as

fj := I (∅) · · · I (∅)︸ ︷︷ ︸
Pj −Pj+1−1

I (Xj )fj−1 (j = 1, 2, . . . , �),

fX := f�,

where Xj = {
xj (k)

}nj

k=1 ⊂ X ∈ XY . Note that, from the definition of a 10-insertion, I (∅) is

the procedure needed to insert 10 s between 10:

f = 0011100111000001101000111000000,

I (∅)f = 00111 10 00111 10 0000011 10 01 10 000111 10 000000,

and fX ∈ �Y by construction. We also define �̃Y by

�̃Y := {fX|X ∈ XY }.
Lemma 2.

〈s1, s2, . . . , sN 〉Y = 1

L|�̃Y |
∑
f ∈�̃Y

L∑
k=1

f (k + s1)f (k + s2) · · · f (k + sN). (9)

Proof. By virtue of the definition of fX, �̃Y is the set of states with conserved quantities Y
and the last entry of the 10-sequence is one of the 0s that are not marked in the time evolution
rule, i.e. fX(L) = (TLfX)(L) = 0. By defining the shift operator S by (Sf )(n) := f (n + 1),
and (Skf ) := S(Sk−1f ) (k = 1, 2, . . .) with S0f := f and for sets

Sk�̃Y := {SkfX|X ∈ XY } (k = 1, 2, . . . , L),

we find

∀f ∈ �Y , �{k|f ∈ Sk�̃Y (k = 1, 2, . . . , L)} = L0.

Note that SLf = f . Since |�Y | = L
L0

|�̃Y |,

〈s1, s2, . . . , sN 〉Y = 1

|�Y |
∑
f ∈�Y

f (s1)f (s2) · · · f (sN)

= 1

L|�̃Y |
L∑

k=1

∑
f ∈Sk�̃Y

f (s1)f (s2) · · · f (sN)

= 1

L|�̃Y |
L∑

k=1

∑
f ∈�̃Y

f (s1 + k)f (s2 + k) · · · f (sN + k).

Thus, we obtain (9). �

Proposition 6. For X ∈ XY , fX is explicitly given as

fX(n) = u0
n(X),

where

ut
n(X) := ηt−1

n+1(X) − ηt
n+1(X) − ηt−1

n (X) + ηt
n(X),

ηt
n(X) := max

mij ∈Z,

i∈[�]; j∈[ni ]

[
�∑

i=1

ni∑
k=1

mik

(
tPi − n − xi(k) + L + k + 1 +

Zi

2

)

−
�∑

i=1

ni∑
k=1

�∑
j=1

nj∑
h=1

mik�ikjhmjh

⎤
⎦ , (10)

9



J. Phys. A: Math. Theor. 43 (2010) 135205 J Mada and T Tokihiro

�ikjh := Zi

2
δij δkh + Pmax[i,j ],

Zi := L − 2

⎛
⎝Pi

i∑
j=1

nj +
�∑

j=i+1

njPj

⎞
⎠ .

Proof. From proposition 1, fX is determined by the parameters Wn and an (n = 1, 2, . . . , s).
Here Wn is the amplitude of the nth soliton and an is its position, i.e. the position of the nth
10-wall, counting from the right. From the definition of the position and the amplitude of
a soliton, it follows that both can be determined from 10-insertions. Because of the way fX
was constructed, the set {xj (k)}nj

k=1 corresponds to the position of nj solitons with amplitude
Pj, though it does not directly give their position. Hereafter, we shall refer to a soliton with
amplitude P as a P-soliton. By considering the relation between the position of a soliton and
10-insertions, we find that the position of the kth Pj-soliton counting from the right is
L − x

(�)
j (k) + 2, where x

(�)
j (k) is determined recursively: we define x

(i)
j (k) (i ∈ [ � ], j ∈

[ i ], k ∈ [nj ]) as

x
(i)
j (k) := xj (k) + (Pj − Pi+1)(2βj (k) + 2k − 1)

+
i∑

s=j+1

2(Ps − Pi+1)α
(s)
j (k) − k + 1,

where

α
(i)
j (k) := �

{
r ∈ [ni]

∣∣Li−1 + ni − xi(r) + 1 > g
(i)
j (k)

}
,

β1(k) := 0, βi(k) :=
i−1∑
s=1

�
{
r ∈ [ns]

∣∣g(i)
s (r) � Li−1 + ni − xi(k) + 1

}
,

g
(i)
j (k) := max

{
m ∈ [Li−1 + ni]

∣∣∣∣∣m = Li−1 − x
(i−1)
j (k) + 1

+ �{r ∈ [ni]|Li−1 + ni − xi(r) + 1 � m}

}
.

Note that x
(i)
j (1) < x

(i)
j (2) < · · · < x

(i)
j (nj ). We show an example in appendix A.

Recalling the fact that �{ r ∈ [d] | L+d −jr +1 < g′
k } in (4) is the number of inserted 10s,

on the left of the kth soliton (here we do not count the inserted 10s as solitons), the concrete
meaning of these variables becomes clear: α

(i)
j (k) denotes the number of Pi-solitons on the

right of the kth Pj-soliton, and βj (k) denotes the number of solitons with amplitudes greater
than Pj, to the right of the kth Pj-soliton.

Since
{
L − x

(�)
j (k) + 2

}�,nj

j=1,k=1 is the complete set of positions of the solitons, there exists
a one-to-one mapping ρ : { (j, k) | j ∈ [ � ], k ∈ [nj ] } → [ s ] such that

aρ(j,k) = L − x
(�)
j (k) + 2.

From these recursion relations, we have

x
(�)
j (k) = xj (k) + Pj (2βj (k) + 2k − 1) +

�∑
i=j+1

2Piα
(i)
j (k) − k + 1

= xj (k) + 2

⎧⎨
⎩Pj

(
βj (k) + (k − 1)

)
+

�∑
i=j+1

Piα
(i)
j (k)

⎫⎬
⎭ + Pj − k + 1.

10
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Since the position of the kth Pj-soliton is aρ(j,k), Wρ(j,k) = Pj and the set of amplitudes of the

solitons on the right of the kth Pj-soliton is nothing but
{
Wh

}ρ(j,k)−1
h=1 . From the definition of

α
(i)
j (k), βj (k),

α
(i)
j (k) = �{h ∈ [ρ(j, k) − 1]|Wh = Pi},

βj (k) = �{h ∈ [ρ(j, k) − 1]|Wh > Pj },
and

�{h ∈ [ρ(j, k) − 1]|Wh = Pj } = k − 1.

Thus, we obtain

x
(�)
j (k) = xj (k) +

ρ(j,k)−1∑
h=1

2 min{Wρ(j,k),Wh} + Wρ(j,k) − k + 1.

Therefore, we find a concrete expression of aρ(j,k), and (10) is immediately obtained from (2)
and (3). �

From lemma 2 and proposition 6, we immediately obtain the following theorem.

Theorem 1. Let XY be the set defined in (8). We then have

CY (d1, d2, . . . , dN−1) = 1

L|XY |
∑
X∈XY

L∑
n=1

un(X)

N−1∏
i=1

un+di
(X),

for un(X) ≡ u0
n(X), as given in (10).

4. Concluding remarks

In this paper, we investigated correlation functions for the PBBS and obtained explicit forms
for 1-point and 2-point functions at short distances. We also give expressions in terms of
ultradiscrete theta functions for general N-point functions. Investigating their asymptotic
properties and clarifying the relation to correlation functions for quantum integrable systems
are problems that will be addressed in the future.

Finally, we comment on the time averages of quantities in the PBBS. The time average

Cf (d1, d2, . . . , dN−1) = 1

L|Tf |
Tf∑
t=1

L∑
n=1

(
T t

Lf
)
(n)

N−1∏
j=1

(
T t

Lf
)
(n + dj ),

where Tf , the fundamental cycle of f ∈ �L, depends not only on the conserved quantities of
the state but, in general, also on the initial state f itself. For example, the conserved quantities
of the states f1 = 0100100 and f2 = 0101000 are the same, but Cf1(3) = 1

7 and Cf2(3) = 0.
Hence, in general, Cf (d1, d2, . . . , dN−1) = CY (d1, d2, . . . , dN−1) even for f ∈ �Y . Note that
for the 1-point function Cf (∅), we can easily show that

∀f ∈ �Y , Cf (∅) = CY (∅) = M

L
.
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Appendix A. Example to determine the position of solitons

Let L = 33, (P1, n1) = (3, 2), (P2, n2) = (2, 3) and (P3, n3) = (1, 2). Since
L0 = 5, L1 = 9, L2 = 19, we suppose {xi(k)}�, ni

i=1,k=1 ∈ XY to be

x1(1) = 3, x1(2) = 6; x2(1) = 2, x2(2) = 5, x2(3) = 9; x3(1) = 12, x3(2) = 17.

In this case, by successive 10-insertions, we obtain the state

011100100110001001110011000011000.

Then, we see from [9] that

{(ak,Wk)}7
k=1 = {(31, 2), (25, 3), (21, 2), (16, 1), (12, 2), (8, 1), (5, 3)}.

On the other hand, according to the algorithm in the proof of proposition 6, the variables
are determined as follows.

(i) The variables x
(1)
1 (k) are determined from the initial data:

x
(1)
1 (1) = x1(1) + (P1 − P2)(2β1(1) + 2 · 1 − 1) − 1 + 1

= 3 + (3 − 2)(2 · 0 + 2 · 1 − 1) − 1 + 1 = 4,

x
(1)
1 (2) = x1(2) + (P1 − P2)(2β1(2) + 2 · 2 − 1) − 2 + 1

= 6 + (3 − 2)(2 · 0 + 2 · 2 − 1) − 2 + 1 = 8.

(ii) To determine the variables x
(2)
j (k), we calculate g

(2)
1 (k), α

(2)
j (k) and β2(k):

g
(2)
1 (1) = max

{
m ∈ [L1 + n2]

∣∣∣∣∣m = L1 − x
(1)
1 (1) + 1

+ �{r ∈ [n2]|L1 + n2 − x2(r) + 1 � m}

}

= max

⎧⎪⎨
⎪⎩m ∈ [12]

∣∣∣∣∣∣∣m = 6 + �

⎧⎪⎨
⎪⎩r ∈ [3]

∣∣∣∣∣∣∣
11 (r = 1)

8 (r = 2)

4 (r = 3)

⎫⎪⎬
⎪⎭ � m

⎫⎪⎬
⎪⎭
⎫⎪⎬
⎪⎭ = 8,

g
(2)
1 (2) = max

⎧⎪⎨
⎪⎩m ∈ [12]

∣∣∣∣∣∣∣m = 2 + �

⎧⎪⎨
⎪⎩r ∈ [3]

∣∣∣∣∣∣∣
11 (r = 1)

8 (r = 2)

4 (r = 3)

⎫⎪⎬
⎪⎭ � m

⎫⎪⎬
⎪⎭
⎫⎪⎬
⎪⎭ = 2;

α
(2)
1 (1) = �

{
r ∈ [n2]

∣∣L1 + n2 − x2(r) + 1 > g
(2)
1 (1)

}

= �

⎧⎪⎨
⎪⎩r ∈ [3]

∣∣∣∣∣∣∣
11 (r = 1)

8 (r = 2)

4 (r = 3)

⎫⎪⎬
⎪⎭ > 8

⎫⎪⎬
⎪⎭ = 1,

α
(2)
1 (2) = �

⎧⎪⎨
⎪⎩r ∈ [3]

∣∣∣∣∣∣∣
11 (r = 1)

8 (r = 2)

4 (r = 3)

⎫⎪⎬
⎪⎭ > 2

⎫⎪⎬
⎪⎭ = 3;

β2(1) = �
{
r ∈ [n1]

∣∣g(2)
1 (r) > L1 + n2 − x2(1) + 1

}
= �

{
r ∈ [2]

∣∣∣∣∣8 (r = 1)

2 (r = 2)

}
� 11

}
= 0,

12
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β2(2) = �

{
r ∈ [2]

∣∣∣∣∣8 (r = 1)

2 (r = 2)

}
� 8

}
= 1,

β2(3) = �

{
r ∈ [2]

∣∣∣∣∣8 (r = 1)

2 (r = 2)

}
� 4

}
= 1.

Then, we have

x
(2)
1 (1) = x1(1) + (P1 − P3)(2β1(1) + 2 · 1 − 1) + 2(P2 − P3)α

(2)
1 (1) − 1 + 1

= 3 + (3 − 1)(2 · 0 + 2 · 1 − 1) + 2(2 − 1) · 1 − 1 + 1 = 7,

x
(2)
1 (2) = 17;

x
(2)
2 (1) = x2(1) + (P2 − P3)(2β2(1) + 2 · 1 − 1) − 1 + 1

= 2 + (2 − 1)(2 · 0 + 2 · 1 − 1) − 1 + 1 = 3,

x
(2)
2 (2) = 9, x

(2)
2 (3) = 14.

(iii) To determine the variables x
(3)
j (k), we calculate g

(3)
j (k), α

(3)
j (k) and β3(k):

g
(3)
1 (1) = max

{
m ∈ [21]

∣∣∣∣∣m = 13 + �

{
r ∈ [2]

∣∣∣∣∣10 (r = 1)

5 (r = 2)

}
� m

}}
= 15,

g
(3)
1 (2) = max

{
m ∈ [21]

∣∣∣∣∣m = 3 + �

{
r ∈ [2]

∣∣∣∣∣10 (r = 1)

5 (r = 2)

}
� m

}}
= 3;

g
(3)
2 (1) = max

{
m ∈ [21]

∣∣∣∣∣m = 17 + �

{
r ∈ [2]

∣∣∣∣∣10 (r = 1)

5 (r = 2)

}
� m

}}
= 19,

g
(3)
2 (2) = max

{
m ∈ [21]

∣∣∣∣∣m = 11 + �

{
r ∈ [2]

∣∣∣∣∣10 (r = 1)

5 (r = 2)

}
� m

}}
= 13,

g
(3)
2 (3) = max

{
m ∈ [21]

∣∣∣∣∣m = 6 + �

{
r ∈ [2]

∣∣∣∣∣10 (r = 1)

5 (r = 2)

}
� m

}}
= 7;

α
(3)
1 (1) = �

{
r ∈ [2]

∣∣∣∣10 (r = 1)

5 (r = 2)

}
> 15

}
= 0,

α
(3)
1 (2) = �

{
r ∈ [2]

∣∣∣∣∣10 (r = 1)

5 (r = 2)

}
> 3

}
= 2;

α
(3)
2 (1) = �

{
r ∈ [2]

∣∣∣∣∣10 (r = 1)

5 (r = 2)

}
> 19

}
= 0,

α
(3)
2 (2) = �

{
r ∈ [2]

∣∣∣∣∣10 (r = 1)

5 (r = 2)

}
> 13

}
= 0,

α
(3)
2 (3) = �

{
r ∈ [2]

∣∣∣∣∣10 (r = 1)

5 (r = 2)

}
> 7

}
= 1;
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β3(1) = �

{
r ∈ [2]

∣∣∣∣∣15 (r = 1)

3 (r = 2)

}
� 10

}
+ �

⎧⎪⎨
⎪⎩r ∈ [3]

∣∣∣∣∣∣∣
19 (r = 1)

13 (r = 2)

7 (r = 3)

⎫⎪⎬
⎪⎭ � 10

⎫⎪⎬
⎪⎭ = 3,

β3(2) = �

{
r ∈ [2]

∣∣∣∣∣15 (r = 1)

3 (r = 2)

}
� 5

}
+ �

⎧⎪⎨
⎪⎩r ∈ [3]

∣∣∣∣∣∣∣
19 (r = 1)

13 (r = 2)

7 (r = 3)

⎫⎪⎬
⎪⎭ � 5

⎫⎪⎬
⎪⎭ = 4.

Then, we have

x
(3)
1 (1) = x1(1) + P1(2β1(1) + 2 · 1 − 1) +

3∑
s=2

2Psα
(s)
1 (1) − 1 + 1

= 3 + 3(2 · 0 + 2 · 1 − 1) + 2(2 · 1 + 1 · 0) − 1 + 1 = 10,

x
(3)
1 (2) = 30;

x
(3)
2 (1) = x2(1) + P2(2β2(1) + 2 · 1 − 1) + 2P3α

(3)
2 (1) − 1 + 1

= 2 + 2(2 · 0 + 2 · 1 − 1) + 2 · 1 · 0 − 1 + 1 = 4,

x
(3)
2 (2) = 14, x

(3)
2 (3) = 23;

x
(3)
3 (1) = x3(1) + P3(2β3(1) + 2 · 1 − 1) − 1 + 1

= 12 + 1 · (2 · 3 + 2 · 1 − 1) − 1 + 1 = 19,

x
(3)
3 (2) = 27.

(iv) Finally, we obtain the position of solitons:

L − x
(3)
j (k) + 2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

25 (j = 1, k = 1),

5 (j = 1, k = 2);
31 (j = 2, k = 1),

21 (j = 2, k = 2),

12 (j = 2, k = 3);
16 (j = 3, k = 1),

8 (j = 3, k = 2).

Therefore, we confirm that L − x
(�)
j (k) + 2 is the position of the kth soliton among the

solitons with amplitude Pj.

Appendix B. Example of values for the correlation function

From theorem 1, we obtain the following examples.

(a) L = 12; P1 = 3, n1 = 1; P2 = 1, n2 = 2 :

CY (∅) = 5
12 , CY (1) = 1

6 , CY (2) = 13
84 , CY (3) = 19

126 , CY (1, 2) = 5
84 ;

(b) L = 14; P1 = 2, n1 = 2; P2 = 1, n2 = 2 :

CY (∅) = 3
7 , CY (1) = 1

7 , CY (2) = 5
49 , CY (3) = 82

441 , CY (1, 2) = 0;
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(c) L = 14; P1 = 3, n1 = 1; P2 = 1, n2 = 3 :

CY (∅) = 3
7 , CY (1) = 1

7 , CY (2) = 5
28 , CY (3) = 69

392 , CY (1, 2) = 5
112 ;

(d) L = 14; P1 = 3, n1 = 1; P2 = 2, n2 = 1; P3 = 1, n3 = 1 :

CY (∅) = 3
7 , CY (1) = 3

14 , CY (2) = 3
28 , CY (3) = 13

112 , CY (1, 2) = 1
16 .
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